

Structure of Cement Phases from *ab initio* Modeling

Crystalline C-S-H

Sergey V. Churakov

sergey.churakov@psi.ch

Laboratory for Waste Management Paul Scherrer Institute Switzerland

PAUL SCHEEREE INSTITUT

Cement Phase Composition

C-S-H Solid Solution Model

Lothenbach & Winnefelf(2006) after Kulik & Kersten (2001)

Paul Scherrer Institut • 5232 Villigen PSI

Possible end-Members for Amorphous C-S-H Solid Solutions

C-S-H (I): Anomalous – Normal Tobermorite Solid Solution Ca/Si = 0.60 - 0.75Ca₄Si₆O₁₅(OH)₂×5H₂O – Ca_{4.5}Si₆O₁₆(OH)×5H₂O

C-S-H (II): Normal Tobermorite – Jennite Solid Solution Ca/Si = 0.75 - 1.50

 $Ca_{4.5}Si_6O_{16}(OH) \times 5H_2O - Ca_9Si_6O_{18}(OH)_6 \times 8H_2O$

Further relevant C-S-H Phases

Xonotlite:

 $Ca_6Si_6O_{17}(OH)_2$

Paul Scherrer Institut • 5232 Villigen PSI

Basic Structural Elements of C-S-H Phases

Xonotlite Ca₆Si₆O₁₇(OH)₂ 11 Å Tobermorite Ca_{4+x}Si₆O_{15+2x}(OH)_{2-2x}×5H₂O

Jennite Ca₉Si₆O₁₈(OH)₆×8H₂O

Method

Molecular Dynamics (MD)

 $\Gamma(\{R_k\},\{\dot{R}_k\})$

Ensemble of position and velocities

Average over Ensemble

Structure:

- Bond distances
- Crystallographic positions
- ...

Thermodynamics:

- Energies
- Temperature

• ...

Dynamics:

- IR spectra
- Diffusion

• ...

Interaction Potentials

 $-\frac{\hbar^2}{2m}\nabla^2\Psi + U\Psi = E\Psi$

Ab Initio methods
 Solve Schrödinger equation
 to obtain energy and forces

• Empirical force field methods *intra*-molecular: harmonic bond stretching, bending ... *inter*-molecular: electrostatic and van der Waals interaction

Ab Initio <=> Empirical

Computationally expensive
Valid for any P-T conditions and chemistry
Correct description of bond breaking/forming

© Fast computation

⁽²⁾ *Must be calibrated for the system of interest*

Section 6: Fail to describe bond breaking/forming

 \bigcirc up to ~ n×10⁶ atoms \bigcirc up to ~ n×10² ns

Density functional theory

Hohenberg & Kohn, 1964; Kohn & Sham 1965;

- Exact Hamiltonian
- *3N dimensional problem* far too complex :-((

Kohn-Sham Equation

$$\begin{cases} H^{KS}\psi_1(r_3) = \mathcal{E}_1^{KS}\psi_1(r_3) \\ \dots \dots \end{pmatrix}$$

 $\Big(H^{KS}\psi_N(r_3) = \varepsilon_N^{KS}\psi_N(r_3)\Big)$

Approximate Hamiltonian
3 dimensional problem but can be solved !:-))

UL SCHERRER INSTITU

Approximations for Exchange and Correlation functional

 V_{xc}

• local density approximation (LDA) $\hat{V}_{xc}[\rho^{el}(r)]$ homogeneous electron gas • generalized gradient approximation (BLYP, PBE,) $\hat{V}_{xc}[\rho^{el}(r), \nabla \rho^{el}(r)]$

Pseudopotential approximation

an example for Si atom

DFT approach used in this work

- CPMD code (used for oblique supercell)
 - Plane Wave basis set
 - 70 Ry cut-off
 - BLYP functional, MT-pseudopotentials
 - Car-Parrinello MD
- CP2K/Quickstep code (used for orthogonal supercell)
 - Gaussian and Plane Wave basis set
 - Triple- ζ basis for O and H, double- ζ for Si and Ca
 - PBE functional, Goedeker pseudopotentials
 - Born Oppenheimer MD

Xonotlite Ca₆Si₆O₁₇(OH)₂

Ideal structure from X-ray studies:

Calculated IR spectra

CPMD, BLYP, MT-PP, 80 Ry

Experimental Observations

NMR:

- Presence of both Q², Q³ and Q¹ sites
- Presence OH with different environment and molecular H₂O

IR and TG/DTA:

Presence of molecular H₂O

EDS:

• Ca:Si > 1.0 in disordered samples

Possible defect formation mechanism ${Si}_{Si}^{X} + 2H_2O = {4H}_{Si}^{X} + SiO_2$

Paul Scherrer Institut • 5232 Villigen PSI

Paul Scherrer Institut • 5232 Villigen PSI

Thermodynamics of Defects in Xonotlite

$$2\{\mathbf{H}_4\}_{Q_3}^{\times}\{\mathbf{Si}\}_{Q_3}^{\times} = \{\mathbf{Si}_2\}_{Q_3,Q_3}^{\times} + \{\mathbf{H}_8\}_{Q_3,Q_3}^{\times}$$

$\{\mathbf{Si}_2\}_{Q^3,Q^3}^{\times}$	$\left\{ \mathrm{H}_{8}\right\} _{Q^{3},Q^{3}}^{\times}$	- ovn	ΔE
$\left\{ \left\{ \mathbf{H}_{4}\right\} _{\mathcal{Q}_{3}}^{\times}$	$\{\mathbf{Si}\}_{Q_3}^{\times}$		\overline{RT}

Churakov & Mandaliev (2008) CCR

Structure of Defects in Xonotlite

Idealized Structure

Structure with Defects

Churakov & Mandaliev (2008) CCR

Paul Scherrer Institut • 5232 Villigen PSI

Nuclear Energy and Safety Research Department Laboratory for Waste Management

IR spectra

Churakov & Mandaliev (2008) CCR 14 October, 2008, Le Croisic

Structure of 11 Å Tobermorite

Anomalous Tobermorite $Ca_4Si_6O_{15}(OH)_2 \times 5H_2O$

Normal Tobermorite Ca_{4.5}Si₆O₁₆(OH)×5H₂O

Anomalous 11 Å Tobermorite $Ca_4Si_6O_{15}(OH)_2 \times 5H_2O$

20 ps NVE ab initio MD trajectory T~ 310 K

cp2k/QuickStep/GPW, PBE, DZP(Ca,Si), TZ2P(O,H)

Paul Scherrer Institut • 5232 Villigen PSI

Preserential orientation of water molecules in anomalous 11 Å Tobermorite

Churakov (2009) Amer. Miner.

321K

Preferential orientation of water molecules in anomalous 11 Å Tobermorite

506K

Paul Scherrer Institut • 5232 Villigen PSI

Normal 11 Å Tobermorite

$Ca_{4.5}Si_6O_{16}(OH) \times 5H_2O$

Merlino et al. (2001) X-ray diffraction

Normal 11 Å Tobermorite Ca_{4.5}Si₆O₁₆(OH)×5H₂O

Supercell setup

Merlino et al. (2001) X-ray diffraction

Paul Scherrer Institut • 5232 Villigen PSI

Normal 11 Å Tobermorite

Ca_{4.5}Si₆O₁₆(OH)×5H₂O

AI MD, PBE, cp2k/QuickStep/GPW, 310 K

Snapshot form ab initio MD

Paul Scherrer Institut • 5232 Villigen PSI

Normal Tobermorite

X-ray diffraction

Snapshot form ab initio MD

Paul Scherrer Institut • 5232 Villigen PSI

Structure of interlayer Ca ion in Normal Tobermorite

Churakov (2009) EJM

Paul Scherrer Institut • 5232 Villigen PSI

Calculated vibrational density of state Normal 11 Å Tobermorite

Paul Scherrer Institut • 5232 Villigen PSI

PAUL SCHEEREE INSTITUT

Jennite

Experimental Observations

 $Ca_9Si_6O_{18}(OH)_6 \times 8H_2O$

Bonaccorsi et al. (2004)

XRD:

- Presence of both Q² sites only
- Presence >Ca-OH linkage only

NMR:

- Presence of both Q², and Q¹ sites
- Presence both >Si-OH and >Ca-OH linkage

PAUL SCHEEREE INSTITUT

Nuclear Energy and Safety Research Department Laboratory for Waste Management

Jennite Ca₉Si₆O₁₈(OH)₆×8H₂O

Dynamic Proton Distribution

$log(\rho_H(\Gamma)) \sim -\Delta E/kT$

 $\Delta E = 10\text{-}15 \text{ kJ mol}^{-1}$

310 K MD CPMD, BLYP, MT-PP, 70 Ry

Churakov (2008) CNR

Paul Scherrer Institut • 5232 Villigen PSI

Summary structure of C-S-H phase Xonotlite, Tobermorite and Jennite

- Distribution of water and cations in the interlayer of tobermorite and jennite
- IR and NMR spectra are interpreted on the basis of calculation
- Preferential formations of defects in Q³ sites in xonotlite
- Preferential stability of defects in bridging tetrahedra of CSH phases
- Dangling O-sites on the bridging Si tetrahedra of jennite are de-protonated
- The dangling de-protonated sites are likely sorption sites

Acknowledgments

Peter Mandaliev Jan Tits Erich Wieland Dmitri Kulik Marcella Iannuzzi-Mauri Matthias Krack